

Oxy-fuel Tableware Furnace with Novel Oxygen- and Natural Gas Preheating System

Presentation by Dr. Tunç Görüney

T. Görüney¹, N. Arzan¹, S. Koç², O. Öztürk³, H. Şahin³, H. Kim⁴, T. Kang⁴, Y. Joumani⁵, X. Paubel⁶, L. Jarry⁷

¹ ŞİŞECAM R&D, Kocaeli, Turkey, ² Paşabahçe, Istanbul, Turkey, ³ Paşabahçe Bulgaria EAD, Targovishte, Bulgaria, ⁴ Air Liquide R&D, Newark, Delaware, ⁵ Air Liquide R&D, les Loges-en-Josas, France, ⁶ Air Liquide ALTEC, Paris, France, ⁷ Air Liquide, Shanghai, China

Şişecam Corporate Overview

- **\$2.6 BN** in Sales (50% international)
- Operations in 13 Countries
- **21,000** Employees
- Sales to **150** Countries
- 28% of shares listed at BIST (SISE.IS), 72% by İşbank
- 4 Production Groups (11,500 TPD glass)
 Flat / Container / Tableware / Chemicals
- Consumes 3.85%* of Turkey's NG and 0.7%* of Turkey's electricity
- < 1% of sales to R&D spending

GLOBAL RANKING by Production '15			
	Europe	World	
Flat	2	5	
Container	4	4	
Tableware	2	3	
Chemicals	4	10	

 $\underline{\text{http://www.sisecam.com.tr/en/investor-relations/presentations-and-bulletins/annual-reports}}$

Former HQ

Şişecam Waste Heat Recovery Portfolio

- <u>Air-fuel</u>

- Organic Rankine Cycle (9 MW_{e,net})
- Steam Turbine (8 MW_{e,net})
- Absorption Chillers (5 MW_{th.cool})
- Waste Heat Boilers (18 MW_{th,heat})
 - Hot Water
 - Steam

- <u>Oxy-fuel</u>

- Preheated Oxy-Fuel (1 MW_{th,preheat})

Total WHR less than 4% of global Şişecam energy consumption*

	MW	kWh/ton glass*	% of Total
TOTAL thermal	24	51	59%
TOTAL electric, net	17	36	41%

The world leader in gases, technologies and services for Industry and Health

Presentation Overview

- Motivation
- Background
- Technology and Project Description
- System Layout
- Erection Phase
- Start-up and Operation Phase
 - System Performance
 - Troubleshooting
- Key Enablers and Milestones
- Performance Summary
- Conclusion

Motivation

Increasing energy prices*

Increasingly stringent environmental regulations

- EU BREF BAT: 0.5-0.8 kg/ton for oxy-fuel container glass furnaces
- COP21 United Nations Climate Change Conference (2015)
- NOx emissions of 16 furnaces in 7 plants in Turkey continuously monitored by Ministry of Environment and Urbanization (2016)

Probability of getting external funding for demonstration

- World first at this scale and type of production (color / quality)
- Needed smaller footprint and significant CAPEX reduction for scaled down version of HeatOx technology
 - Float (AGC) → Two heat exchangers per **burner**
 - Tableware (Şişecam) → Two heat exchangers per side

Industrial gas supply synergy

- 2 Float- and 2 Tableware lines at same site in Bulgaria
- N₂ for tin bath, O₂ for melting and polishing (cryogenic)

Technology and Project Description

Oxy-fuel waste heat recovery by preheating reactants (HeatOx)

- 12 MW O₂ and NG heat exchangers, 8 preheated- 2 nonpreheated burners
- Preheating gaseous O₂ (up to 550°C) and NG (up to 450°C) design condition

Safety features

- Intermediate heat exchange fluid (air) used
- Exhaust (ColdOx) mode → Emergency hot air discharge outside building

EU LIFE+ Environment Policy and Governance project application

- Coordinating Beneficiary (Project Coordinator) → Paşabahçe Bulgaria EAD
- Associated Beneficiary (Project Partner) → Air Liquide
- Total project budget: 4.3 MM EUR
- Industrial prototype: < 50% of total budget
- 1.7 MM EUR funding

Project goal to demonstrate;

- Compared to oxy-fuel combustion
 - 9% fuel savings
- Compared to air-fuel combustion
 - 15% CO₂ reduction (fuel and batch)
 - 90% NOx reduction

System Layout

- 4 HeatOx burners on each side
 - Separate O₂ (top) and NG bodies
 - Work with hot- and cold reactants
- Dual stage recuperators per side due to architectural limitations
 - Roof → Dual stage recuperators
 - Beam → Uneven duct path

By-pass damper

Erection Phase

- Building originally designed for endport regenerative furnace
- Modification of existing flue gas channels on-the-fly
- Relocation of interfering pipework
- Completed in 3 months
- Very tight space
- Compliance with architectural / structural limitations

Recuperator delivery

Recuperator installation

Recuperators in place

O₂ and NG exchangers

Start-up and Operation Phase

System Performance (compared to oxy-fuel)

- Practically no impact on furnace pressure management
- No effect on glass quality and color
- Furnace aging → OK but need to finish campaign for final assessment
- Very flexible and adaptable to variations in process (pull, cullet, O₂/NG ratio, etc.)
- Monitoring energy and emissions performance via measurements (composition and flow)

Date	oct-15	nov-15	mai-16
Mode	HeatOx-B	HeatOx-B	HeatOx-B
NOx (ppm)	752.5	760.5	767.1
O2 (%)	2.1	0.65	1.70
NOx expressed as NO2 (mg/Nm3)	1059	993	1057
Pull rate (tpd)	200	200	198
Fumes (Nm3/h)	2113	2113	2133
NOx as NO2 (kg/T)	0.268	0.252	0.273

^{*} NOx expressed as NO2 corrected @ O2 8%

Start-up and Operation Phase

Troubleshooting

Clogging

- ID fan early warning
- Analyses point to Na₂SO₄ deposition
- Estimated cause
- Architectural limitations (retrofit)
- Transitional regimes (debugging phase)
- Implemented design changes to enable declogging w/o interruption to HeatOx

Dampers

 Design revisited on-the-go to better adapt to current process conditions based on learnings during operation phase

Figure 4.14: Deposition rates of sodium sulphate from simulated flue games in a cylindrical tube.

Source: Beerkens, *Deposits and condensation from flue gases in glass furnaces*. Thesis

Clogging: Na₂SO₄ deposition (endoscopy image)

Start-up and Operation Phase

Troubleshooting

Flue Gas Channel

 On-the-go improvements to minimize ambient air leaks into flue gas channels and reduce heat losses

Air Side

- On-the-go improvements to minimize process (hot) air leaks

Carbon Build-up

- Intensifies prior to Cold/Hot transition
- Most of the time only one burner
- Ongoing investigation, nozzle change under evaluation

Carbon build-up on nozzle tip

Key Enablers and Milestones

50% co-funding (LIFE+ 2012)

- Total budget: 4.3 MM EUR
- Total eligible budget: 3.4 MM EUR
- EU funding: 1.7 MM EUR

Outsourced industrial gas supply synergy

- O₂ → Tableware (melting & polishing)
- $N_2 \rightarrow$ Float (tin bath)

Debottlenecking flue gas side issues

- Fixing ambient air leaks and insulation
- More robust by-pass dampers
- De-clogging → Cleaning ports

Debottlenecking air side issues

- Fixing process air leaks
- Fixing thermal expansion issues

Strong committment and teamwork

Group Management - Plant - R&D Corporate Engineering - Technology
 Provider - Suppliers - Consultants

Air Liquide O₂ & N₂ plant

Performance Summary

Aspect	Experience from Project	
Safety	1	No issue reported
Glass Color & Quality	1	No issue reported
Furnace Aging		No issue reported so far, need to revisit at end of campaign
Energy (NG and O₂)	1	 Preheating: ~8%* fuel savings demonstrated on average Foam: initial results favorable compared to oxy-fuel, further investigation needed for validation
Emissions	1	Similar to oxy-fuel (>90% NOx reduction wrt air-fuel)
Maintenance / Reliability		 Retrofit (architectural constraints, no-WHR mindset) Learnings (flue gas- and air) → leaks, clogging, dampers Carbon build-up believed to intensify prior to Cold/Hot transition → ongoing investigation
Ease of Use	1	Start-up and shut-down with the push of a button Highly flexible and adaptable to variations in process
Project Management		On budget / On time

*1.0-1.5% more savings expected at design condition with improvements in progress

Conclusion

World's first tableware scale preheated oxy-fuel waste heat recovery demonstration

- ~8% fuel savings demonstrated, 1.0-1.5% more savings expected at design condition with improvements in progress (~\$250-480K/yr depending on NG price)
- More than **90% NOx reduction** demonstrated compared to air-fuel: **~0.3 kg/ton** [BAT: 0.5-0.8 kg/ton for oxy-fuel container glass furnaces]
- Added value of technology provider and glassmaker working together

Şişecam positioning in advance of increasingly stringent environmental regulations

- Potential NOx regulation change in Turkey in **2017** (operational domain COP21)
- Positive outlook for Oxy-fuel combustion or DeNOx equipment
- Şişecam's unique multi-segment production structure at same site

Şişecam continuing to invest in innovative technologies that bring value and reduce environmental footprint of glass manufacturing

- Partial/full oxy-fuel combustion- and WHR for new investments and retrofits
- Leveraging external partnerships and in-house R&D capabilities

Thank you for your attention

Paşabahçe Bulgaria and Air Liquide thank EC LIFE+ program for funding this project.

For any questions, please contact tgoruney@sisecam.com

...and don't forget to Visit us @ www.ecoheatox.com www.pasabahce.com www.sisecam.com