

Innovation with ALGLASS HeatOxTM

Oxygen and natural gas preheating at high temperature

T. Kang¹, H. Kim¹, V. Sadasivuni¹, K. Kaiser¹, S. Liedel¹, L. Jarry², B. <u>Leroux³</u>, Y. Joumani⁴, L. Kaya⁵ ¹ Air Liquide R&D, Newark, Delaware (US), ² Air Liquide Head Office, Paris, France ³ Air Liquide ALTEC, Paris, France, ⁴ Air Liquide R&D, les Loges-en-Josas, France, ⁵ SISECAM

12th ESG Conference, Parma 21-24 September 2014

Visit www.ecoheatox.com

Agenda

Visit www.ecoheatox.com

Background

« A special focus on safety »

A new solution for small/medium furnaces challenge

« Why a dedicated technology »

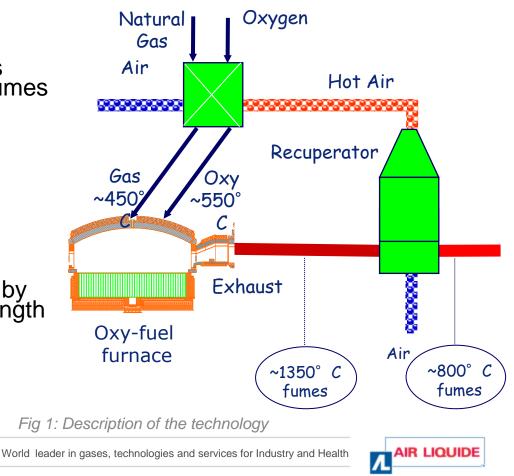
Burner trials

- 2MW burner NOx results
- Flame length
- Flame luminosity enhancement
- Burner pressure drop curves

« A low NOX burner »

Industrialization

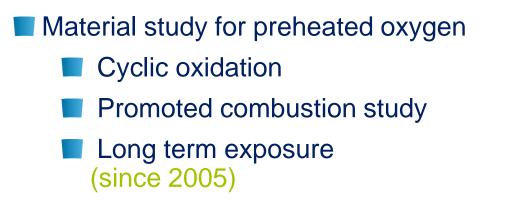
2014


Research & Development

World leader in gases, technologies and services for Industry and Health

In 2000's: development of a green solution for oxyfloat furnaces

- Indirect preheating to avoid all risks related to oxygen mixing with the fumes
- Two-steps approach
 - Air/fumes recuperator
 - Air/Reactants exchangers
 - Oxygen T ~ 550°C
 - Gas T ~ 450°C
- Define number of burners supplied by air/O2 exchanger to optimize the length of pipe exposed to hot O2



3

Research & Development

Using preheated oxygen needs special caution (ASTM protocol)

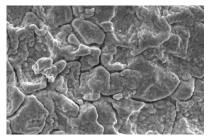


Fig 2: Macroscopic analysis

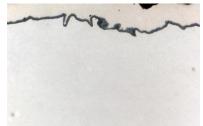


Fig 3: Oxide scale

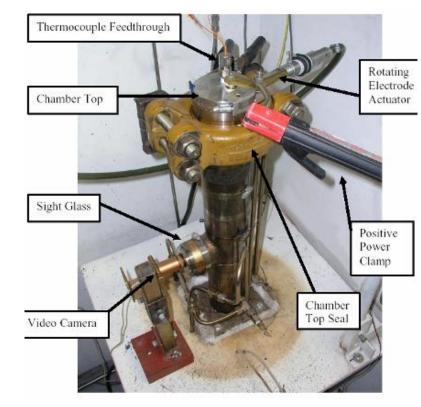


Fig 4: Promotion Ignition Test

2014

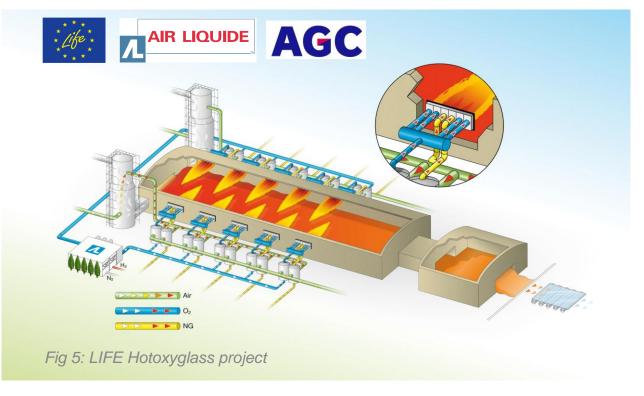
Research & Development

World leader in gases, technologies and services for Industry and Health

Special attention has been paid to oxygen preheating hazards:

- ✤ Material selection
- Flange design
- Dedicated gaskets and leaks control
- Design of oxygen equipments

Safety study brings up the need to design specific technology to:
 Operate Hot as well as Cold reactants without disruption.
 Automatic control and regulation of reactants temperature
 Specific design and <u>Manufacturing process</u> for the Heat exchangers
 Monitoring of the Air thanks to specific control device


Research & Development

Background : environmental results

Visit www.ecoheatox.com

Environmental indicator	Reduction measured (with margin) compared to a state of the art air-fired furnace
Energy consumption	- 25% (margin of 2%)
CO ₂ emissions	- 15%* (margin of 3%)
NO _X emissions	- 83% (margin of 5%)
SO _X emissions	- 38% (mean value)
* when taking into account the	

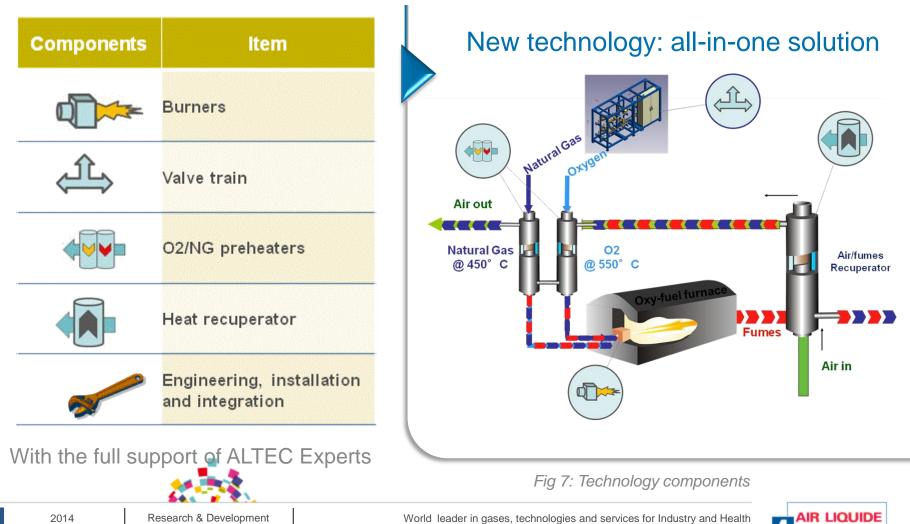
environmental cost of oxygen production

Fig 6: Pilot burner results

- 15 325 tonnes/yr of CO2, equivalent to taking a total of around 3 400 cars out of circulation;
- 1 065 tonnes/yr of NOX;
- 170 tonnes/yr of SOX.
- 10% NG and Oxygen saving thanks to NG (450°C) and O₂ (550°C) preheating.
- The saving was validated for a float glass tank as a first reference (LIFE Hotoxyglass project) and a second float glass started up in 2014.

6

Research & Development



A new solution for small/medium furnaces

Visit www.ecoheatox.com

→ However: more compact HeatOx solution has to be developed for small/medium furnaces that will be implemented for a tableware glass tank as a third reference

- New Patented AL Technology: Oxygen preheating in glass melting for small/medium furnaces :
- One heat exchanger (O2/NG) can accommodate multiple burners (patent pending)
- Flowrate and temperature can be controlled individually (patent pending).
 - ✓ CAPEX savings and smaller footprint

ALGLASS HeatOx burner

- Compact and operable with hot Oxygen and hot Natural gas
- Fig 8: ALGLASS Heatox burner too (automatic setting) for safety concern (patent pending)
- Constant flame length (~3m)

2014

Pilot scale tests at DRTC - USA

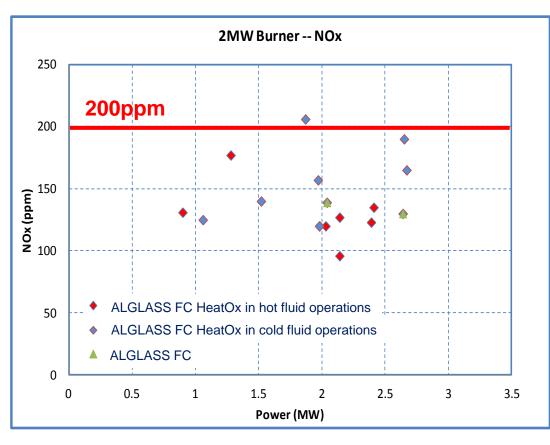

- Tested air Recuperator with O2/NG heat exchangers with multiple independent inlets/outlets to supply burners.
- 1MW and 2MW HeatOx burners were approved with cold and hot reactants in a furnace.
- Temperature control schemes were validated.

Fig 9: Pilot facility

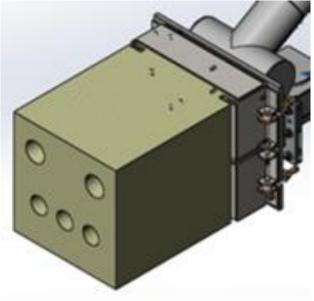


Fig 11: ALGLASS Heatox Burner

Fig 10: Nox evolution as function of burner power

2014

Research & Development

With new burner technology the flame length was about 2.7-3m irrespective of operating temperature of reactants and Power setting.

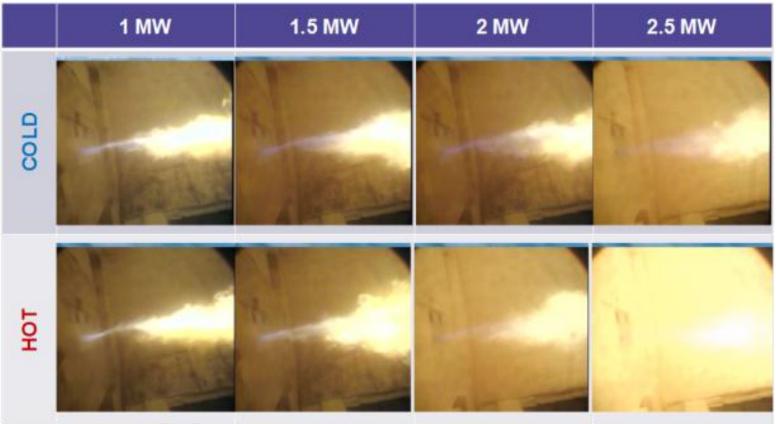


Fig 12: Flame shape as function of burner power

World leader in gases, technologies and services for Industry and Health

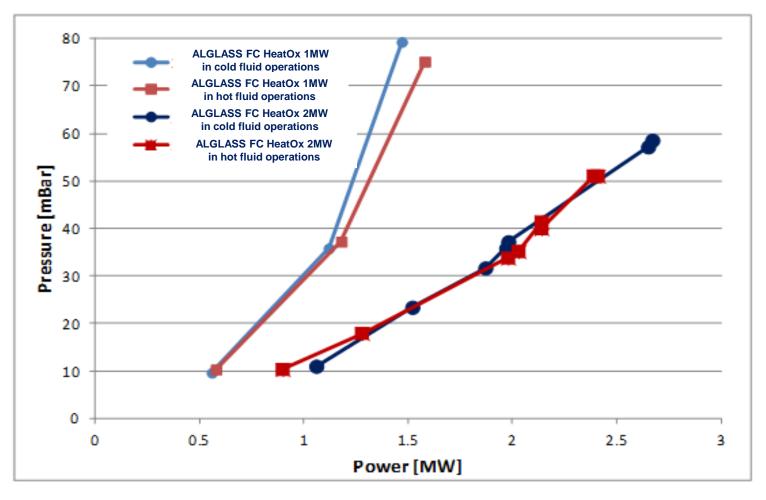
Burner trials: Flame luminosity enhancement

Visit www.ecoheatox.com



Fig 13: 2.5MW cold reactants

Fig 14: 2.5MW hot reactants


2014

Research & Development

World leader in gases, technologies and services for Industry and Health

Fig 15: natural gas pressure upstream the burner

Research & Development

World leader in gases, technologies and services for Industry and Health

0

13

Industrial demonstration under LIFE+ (start-up in 2015)

- Two O2/NG heat exchanger for 8 burners.
- Heat recovery process optimized by Air Liquide

Fig 16: LIFE pannel

Installation at Trakya Glass Bulgaria

Visit www.ecoheatox.com

2

Fig 17: furnace overview

2014

Research & Development

World leader in gases, technologies and services for Industry and Health

5

Pilot scale HeatOx system was demonstrated at DRTC USA

- O2/NG temperature (600°C 400°C)
- Multiple burners can be simultaneously operated with independent power control.

Burner technology is :

- Compact and operable with hot and cold reactants
- Constant flame length (~3m) with hot and cold reactants.
- NOx level under 200ppm at any given power.
- -10% energy savings
- Pressure drop and fluctuation is minimal during the transition from cold to hot operation.

Air Liquide and TGB thanks EC Life+ program for funding this project

For any question, please contact Luc.jarry@airliquide.com

Research & Development Opening new ways

THANK YOU FOR YOUR ATTENTION

www.airliquide.com

Follow @AirLiquideGroup

World leader in gases, technologies and services for Industry and Health

Research & Development