

Eco-HeatOx: A Novel Method to Exploit Waste Heat in Oxy/Fuel Furnaces

Levent Kaya*-Youssef Journani**

*Trakya Glass Bulgaria EAD/**Air Liquide-France

6th Balkan Conference on Glass Science&Technology Nessebar/BULGARIA 1-4 October 2014

Content

Introduction

- Development of Heat Recovery Technology for Oxy/Tableware Furnace
- Expected Industrial Results

Energy Consumed in Glass Making

	GJ/ton
Container	5-9
Flat	6-10
Tableware	8-15
Fiber	17-25

- Glass melting- energy intensive activity
 - Consumed energy in a melting furnace- 55-85% of the puchased energy
- \succ CO₂ emmission-in proportion to production rate and the fuel quantity used
 - decomposition reactions of raw materials(Soda Ash, Dolomite&Lime)-30%
 - fuel(natural gas)-70%!
- > Fuel saving offers an important potential to reduce CO_2 emmission

Waste Heat Potential in Oxy/Combustion

- Oxy/Combustion offers an increase in thermal efficiency over a regenerative melting system-no parasitic nitrogen in oxidant
- It still has a considerable waste heat recovery potential even with the 1/4th of the flue gas volume of a Air/Combustion-higher enthalpy
- High temperature flue gas containes higly radiative tri-atomic CO₂ and H₂O molecules-better heat transfer

	Available Heat (%)	Flue Gas Temperature (°C)	Heat Content of Flue Gases (GJ/ton)
Oxy/Combustion	78	1250-1300	~1.3
Air/Combustion	72	400-450	~1.3

Waste Heat Recovery From Flue Gases

Steam generation

- ✓ Space heating/electricity generation-cyclic demand and high CAPEX
- Direct preheating of raw materials&cullet
 - Very high CAPEX
 - ✓ Up to 250-300°C
 - Up to 15% energy savings
 - Applications limited to container furnaces
- Termochemical recuperator
 - Nascent technology for glass furnaces-validation needed!
- Preheating of reactants(natural gas&oxygen)
 - Successfully applied to an oxy/fuel float

Waste Heat Recovery: Pathway To Low Carbon

- > Oxy combustion thermal efficiency is 8-10% higher than air combustion
- Net efficiency gain over a regenerative system is 1.5-2% if electricity used in O₂ production is taken into account-net reduction in CO₂ much less than the thermal efficiency gain!
- Recovering waste heat by preheating the reactants reduces CO₂ in direct proportion to the fuel saved!
- Recovered energy- identical to the energy consumed for O2 production!

Concept of Heat Recovery in an Oxy-Fired Furnace

 High enthalpy of the flue gas allows air to be heated up to 650-700°C in a metallic recuperator
Hot air is then used to preheat the natural gas &oxygen up to 450°C in specially developed heat exchangers- safe operation!
For every 100°C increase in reactant temperature saves 1% energy- 1% less CO₂!

Collaborating For a Better Environment 🏏

Trakya Glass Bulgaria EAD

ALGLASS

Life Eco – HeatOx LIFE12ENV/BG/000756

Demonstration and validation of a heat recovery packaged solution for decreasing oxy-glass factories' environmental impact

Overview of LIFE+ Eco-HeatOx Project

PROJECT LOCATION: TARGOVISHTE (BG)

BUDGET INFORMATION:

Total amount: 4,329,349 € EU co-funding: 1,689,986 €

DURATION: Start: 01/07/2013 - End: 31/12/2016

> PROJECT'S IMPLEMENTORS:

Coordinating Beneficiary:

- Trakya Glass Bulgaria EAD (BG)
- Associated Beneficiary:
 - Air Liquide S.A. (FR)

Project Summary

> CONTEXT

Oxy-combustion and heating recovery has already allowed a decrease of the environmental impact of the large glass furnaces; lower impact for the environment for small and medium size furnaces can be ensured in terms of:

- Energy efficiency (Treaty of Lisbon, which promotes energy efficiency and saving);
- GHG emissions: (Kyoto Protocol and related Council Decision 2002/358/EC)

PROJECT OBJECTIVES:

« Full Scale » demonstration on a pilot onsite in Targovishte and validation of the efficiency of the innovative technology, which allows recovering energy from flue gases to pre-heat the reactants thanks to innovative heat exchangers and burners for small and medium size furnaces

EXPECTED RESULTS

- Reduction of pollutant emissions:
 - CO₂: specific emissions reduced by 23% (compared to air comb. using a regenerative heat exchanger)
 - NO_x: specific emissions reduced by 90% (NO_x are indirect GHG and are also involved in acid rains)
- Reduction of Energy consumption:
 - 23% of natural gas saved compared to air combustion (9% compared to cold oxy-combustion)
 - 1,052,000 kWh a year saved in oxygen production (54,272 tons of oil equivalent)

Project Objectives

			🕺 An efficient preheat scheme (indirect preheating
	Eco-HeatOx vs. Air Combustion	Eco-HeatOx vs. Oxy Combustion	Air/O2 Exchanger
Energy Consumption(GJ/ton)	-23%	-9%	Air out
O ₂ Consumption(Nm³/h)	•	-9%	-450° C -450°
Dust(kg/ton)	-62%	-	Fumes
NO _x (kg/ton)	-90%	-	Air in
CO ₂ (kg/ton) combustion	-23%	-9%	New () Marcoll Marcoll <th< td=""></th<>
CO ₂ (kg/ton) raw materials			
Total CO ₂ (kg/ton)	-15%	-6%	
CO_2 (kg/ton) O_2 prod.	•	-8%	
Total CO ₂ (kg/ton) process	-12%	-6%	

Project Status

- Installation at Trakya Glass Bulgaria is underway
- Industrial demonstration under LIFE+ will start-up in 2015

Official LIFE+ Board On-site

Trakya Glass Bulgaria EAD&Air Liquide thank the EC LIFE+ Program for funding this innovating project

Visit us @ www.ecoheatox.com

